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Lifetime prediction of brittle materials having 
spatial variations in fracture properties 
K IC and v versus K I 
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The lifetimes of brittle materials under conditions of subcritical crack growth are 
analysed to indicate the effects of spatial variations of Kic and v versus KI and methods 
for studying the variations are suggested. 

1. I n t r o d u c t i o n  
The theory of fracture mechanics permits the 
calculation of a minimum service life for a brittle 
material exhibiting subcritical crack growth under 
known loads and environmental conditions [1 -3 ] .  
This requires proof testing to establish, au, the 
upper limit for crack size, knowledge of the critical 
stress intensity factor, Kc ,  and the dependence of 
the crack front velocity, v, on the stress intensity 
factor, K. 

The above considerations involve the assump- 
tion that the elastic and fracture properties are 
spatially homogeneous and continuous, but it is 
well known that this assumption becomes invalid 
as the dimensions of a volume element under con- 
sideration are reduced [4-10] .  It is also well 
known that v versus K I diagrams based on long 
crack fronts do not always agree with the indi- 
cations of measurements that depend on relatively 
short crack fronts [4 -6 ] .  For example, the par- 
ameter n determined in fitting data to the form 
v ec K I n  may be substantially different when deter- 
mined by a double torsion or a double cantilever 
beam technique [3] than when determined by 
analysing the loading rate dependence of strength 
[4, Sl.  

Some physical manifestations ofinhomogeneous 
fracture mechanics properties are discontinuous 
crack growth under continuous loading [6 ,7] ,  
acoustic emission peaks [8], crack branching, and 
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other forms of deviation from ideal crack propa- 
gation in cases where the stress and initial crack 
geometry are simple. 

The purpose of this paper is two-fold: first, to 
demonstrate by a simplified analysis the possibility 
that large variations in predicted lifetimes may 
result from spatial variations in fracture mechanics 
properties; and second, to suggest the possibility 
of improved methods of determining the constancy 
or variability of the fracture mechanics properties 
of materials. 

2. Analysis 
Two basic equations relevant to crack growth in 
ceramics and glass are 

K I = (~Y~/a (1) 

where Y is a dimensionless factor which depends 
on the geometry of the crack and specimen, K I is 
the stress intensity factor for mode I opening, o is 
the applied stress, and a is a flaw crack length; 

v = A K I  n (2) 

where v is the velocity with which a crack front 
moves, and A and n are experimentally determined 
constants for a range o f K  I values under conditions 
of  fixed temperature and environment. The time 
to failure from a flaw with an initial length, ai, 
under an applied stress, o, as derived from 
Equations 1 and 2 is then [ 1, 3 ] : 
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t = 2K~.-n/[Ao 2 y2  (n -- 2)] (3) 

where Kn is the initial stress intensity factor at the 
flaw. 

By proof testing with a stress % ,  one can select 
specimens conforming to the condition 

KIC > Op Yx/a i (4) 

where ai is a length of any flaw surviving the proof 
test condition, and K m is the critical stress intensity 
factor. The minimum possible time to failure 
under an applied stress, a, is then [1,3] : 

tm = 2 ( K I o O / % ) 2 - n / [ A o  = r 2 ( n  - -2 ) ] .  (5) 

We now consider a case where a flaw is im- 
nedded in a localized atypical region having elastic 
and fracture properties different from the bulk 
properties. In this case the stress intensity factor 
for the localized region may be written as 

K'I = F(a ' ,  x~,/3;,/~k, O) (6) 

where F is a function of the crack length, other 
geometric variables, and the elastic constants a' ,  
x~, and ~ ,  respectively, for the atypical region, of  

the elastic constants of the bulk, /3k, and of the 
applied stress. One can also assume that the sub- 
critical crack growth in the atypical region is also 
described by the form 

V t  t t n  t = A KI  �9 (7) 

In order to arrive at the functional form of 
Equation 1, one can write 

F(a' ,  x~, ~;, ~k, a) -- Yox/a'  / f (a ' ,  x~,13;, {Jk, o) 

so that 
t 

t I r t 
K ~ e g  - K ' f ( a  ,Xi,flj,~k,O) = rax/a ' .  (9) 

It is possible to work with the effective stress in- 
tensity factor defined in Equation 9, but instead 

! 
we will assume that f (a ' ,  x~,/3j,/3 k, a) = 1, which 
corresponds to a condition of  continuous invarient 
elastic properties. We also assume that the proper- 
ties change in a stepwise manner at the boundary.* 
Thus, we obtain 

K~: = rox /a '  (10) 

and 

K ic > % Yx/a; 

which corresponds to Equations 1 and 4. If  we 
t 

further define an and an as upper bounds for ai 
and a[ as determined by a proof test and Kiu and 

! t 
KIn as upper bounds for Kn and Kii, respectively, 
under an applied load, a, then it follows that 

, r K ( a ' / a u f  n = Kiu /K[u  = K i c /  IC- (12) 

Equations 7 and 10 permit us to calculate the 
time to failure of a flaw as illustrated in Fig~ 1, 
where for simplicity the flaw is placed at the 
centre of a spherical atypical region with a radius 
R: 

K "  

(13) 

t' = (2/o 2 r 2 )  [(K~.2-,,' _ K ~ , z - n , ) / A , ( n ,  2) 

+ (K~ 2-n - - K 2 ~ , ) / A ( n  -- 2)], (14) 

where 

K~ - OaYX/R. ( lS) 

The ratio of  minimum times to failure for flaws 
in the atypical and typical regions is 

t 'm/tm = 

K 2-n' - - K '  I' 2-n ') /A'(n '  --  2) + K'I '2-n [A(n --  2) 
I u  

K~u" /A(n  -- 2) 

(16) 

(8) 

Figure 1 Illustration of cracks in atypical and typical 
(11 ) regions. 

*The assumption of stepwise behaviour is made here as a mathematical convenience only. If does not reflect expected 
material behaviour in general, although it may apply to cases such as a flaw within a large single grain. 
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the terms involving K m were dropped from 
Equation 16, as from Equations 3 and 5, because 
of relative insignificance. Furthermore, if R is 
greater than 2a i or 2ap and n ' >  10, the term 
K'I '2-n is negligibly small in Equations 14 and 16. 
Equations 14 and 16 have two time intervals, one 
where a' < R  and one where a' > R ,  and either 
term may dominate. If R happened to be larger 
than the critical crack size, Equations 14 and 16 
would be replaced by dropping all terms except 

I the one containing Kn. 
If the only atypical property is K'm,  Equations 

12 and 16 provide that 
t 

t m / t  m = v(K'm/lKicyX2-n . (17) 

In this case, Fig. 2 shows that minimum lifetimes 
K t  . t decrease rapidly with increasing m, e.g. t m / t  m 

< 0.01 for a K ~ c [ K  m ratio of 1.15 i fn  = 40 and a 
ratio of 1.8 if n = 10. The decreased lifetimes 
result from increases in the flaw sizes that can sur- 
vive a proof test, and then extend under subsequent 
conditions for subcritical crack growth. 

Another simplification results if it is assumed 
that K~c = K m  ,R > 2a', and n' > 10. That is, 

t t, tg.t i t , ~ , ~ n - 2  t m / t m  = A(n  -- 2 )[A' (n '  -- 2 ) + ~,~Iu/,~I) 

( lS) 

o r  

t 
t m ~tin = A ( n  - 2 ) / a ' ( n '  - 2) + (a'/R) ("-=)/= 

(19) 

In most cases the last term should be ~ 1 and, 
therefore, negligible unless the first term is corre- 
spondingly small. 

3. Discussion 
It is important to recognize that most experimental 
studies of fracture and elastic properties begin 
with the objective of determining and evaluating 
the bulk properties of materials as though they are 
constant and continuous for fixed conditions. 
Therefore, in the calculation of lifetimes for v - K  
diagrams, the material properties are treated as 
constants [1 -3 ] .  However, if Equation 14 of our 
analysis is written in terms of  a u and R, one can 
easily see that most of the time between initial 
loading and failure due to subcritical crack growth 
is consumed while the crack remains less than 
twice the original size. Therefore, one is concerned 
with small volumes, (20 to 200 pm) 3 typically, in 
the analysis of fracture resulting from slow crack 
growth. Volumes of this size are known to behave 
differently [4-10,  12]. In the analysis of  relia- 
bility of  lifetime predictions, the errors in measure- 
ments of the fracture properties have been con- 
sidered [11, 12], but so far the effects of real 
spatial variations have not. The importance of the 
latter are stressed here by consideration of K~,e~r, 
the effective stress intensity for a particular defect. 

We have determined that lifetimes under con- 
ditions of subcritical crack growth may be quite 
sensitive to spatial variations in Kin. Larger than 
average values permit correspondingly large defects 
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Figure 2 A plot of Equation 
17 for n = 10 and n =40. 
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to survive proof tests and the large defects may 
then severely limit lifetimes. It is reasonable to 
expect somewhat similar effects for some combi- 
nation of geometry and local atypical elastic 
properties. One example is a change in local stress 
intensity with a change in temperature following 
proof testing at a lower temperature. The effect of 
variations in A and n under simplifying assumptions 
is illustrated in Equations 18 and 19. Some spread 
in the v--K curves is expected [6], but at this 
time the magnitude of  variations is unknown for 
most materials. 

Variations in the measured fracture mechanics 
properties, Km and v versus K, may correspond to 
flaw types [9], regions of atypical grain size, 
abnormally large grains, composition gradients 
surrounding inclusions [ t0] ,  poor mixing, segre- 
gation of minority phases, localized residual stress, 
or flaw interactions. If the variations are appreci- 
able or unknown, it is unlikely that proof testing 
can provide reliable minimum lifetimes for use 
conditions [11 ]. Instead it may be necessary to 
rely on lifetime expectations where these are based 
on statistical variations of the fracture properties 
as well as flaw sizes. 

More efficient and economical methods of 
determining the constancy or variability of frac- 
ture properties are needed; some are suggested by 
the work of Mendiratta and Petrovic [13] and by 
Petrovic et el. [t4,15] where Km values are 
determined through the use of Knoop indentations 
and associated semi-elliptical cracks. Mendiratta 
and Petrovic showed that Kic ~ P/zox/a, where P 
is the indenter load, zo is the plastic deformation 
depth, and a is the crack depth. This result or a 
possible refinement may present the possibility of 
determining variations in KIc in material volumes 
near the surface of a single specimen from the vari- 
ation in the size of indent flaws for fixed loads.* 
In addition, indentation-produced cracks have 
been observed to extend in an approximately semi- 
elliptical configuration under four-point bending 
and conditions of subcritical crack growth; it it is 
established that the semi-major axis, 2e, measured 
at the surface is in agreement with that determined 
from fracture surfaces, then the variations in the 
v--KI parameters, A and n, can be determined 
from incremental extension of the crack. This 
follows from the analysis in the Appendix. The 
advantage of this approach is that a single specimen 

having a large number of controlled initial cracks 
can be utilized to generate a set of data yielding 
the v-Kz dependence of each cracked region. A 
broad range of crack lengths and velocities can 
thus be studied efficiently, The technique is a 
possible alternative to v-K1 determinations using 
the loading rate method, which requires many test 
bars to determine a value o fn  appropriate to small 
volumes [4,5].  Finally, it provides for direct 
statistical study of the time for a flaw to grow to 
critical size. 

C/C 0 -~. 

o r  

where 

Appendix 
Knoop indentation of SiC and Si3N4 causes a 
nearly semicircular crack to form beneath the 
indent. When the crack is extended in a four-point 
bend fixture, which produces a stress that decreases 
with depth, the crack becomes semi-elliptical with 
a regularly decreasing a/c ratio, where a and c are 
the semi-minor and semi-major axes, respectively. 
In this case one can show that the stress intensity 
factor, 

KI = oM(,a/Q) u2 (AI) 

where M-.~ 1.03 if a ~ h ,  the specimen thickness 
[14], can be written as 

KI "~ 2am(e/Tr) u2 =- oYx/e. (A2) 

This follows because Q, 

Q ~ ~2 = Jo (sin2~+a2c~ 

(A3) 

has an approximately linear dependence on ale in 
the range 0.7 <a/c < 1 [16], so that 

Q ~ n2]4-2.2(1  - a l e )  _~2  a/4e. (A4) 

This permits us to proceed with the following 
derivation: 

de/dr = v = AK~ = A(oY)nc "/2 . (A5) 

Integrating and rearranging yields 

[1 --Co (n-2)a A (a y)nt(n -2 ) /2 ]  2/(2-n ), 

(A6) 

e/co = (1 - -Z t )  2/(2-n), ( i 7 )  

Z - A K ~ ( n -  2)/2Co, (A8) 

*We recognize, of course, that more general information on the variation of KIC must come from study of those 
accidental flaws which give rise to fracture at elevated temperatures in appropriate atmospheres. 
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and where Co is the initial value of  c. Using 
Equations A2, A5,  and A7 we obtain 

v = A K ~ ( 1 - - Z t )  n/(2-") (A9) 

K1 = Kii(1 - - Z t )  1/C2-n~. (A10) 

Equation A7 can be expressed as 

log(c/co) = 2 log (1 --  Zt ) / (2  --  n),  (A11) 

which permits one to use any set of  three c and t 
values from a curve o f  c versus t to solve for A and 
n. Thus, if  we write 

f - log(cl /co) / log(c2/co) ,  (A12) 

we may write 

( l - - Z t l ) - - ( 1 - - Z t 2 )  f = 0. (A13) 

This is solved fo rZ  and then Equations A11 and A8 
are used to determine n and A.  Equations A9 and 
A10 can then be used to compute  v and K values if  
desired. Final ly,  if  it is assumed that  the crack 
growth behaviour is described for aLl values of  c by  

one set of  A and n values, the time to failure is 

given by  t r = Z  -~ . 

One can express the factor M in Equation A1 

as 

M = 1.03(1 --  1.25 c /h )  

where h is the thickness o f  a four-point bend 
specimen and where a/c ~ 1. I f  this function were 
incorporated into Equat ion A5, one could not  
derive an explicit  equation for c, v, or KI .  Since 
errors in c and v are quite sensitive to errors in K I 
that result with increasing c/h,  it is desirable to 
keep the initial c/h values as small as possible while 
maintaining the indentat ion-produced cracks as 
the dominant  defects. We note that  the cracks for 
small indents may not  extend to the ends of  the 
indent ,  and that  the shape o f  the initial crack 
might be slightly different than the crack after 
growth in four-point  bending. For  these reasons 
the initial crack lengths to be used in calculations 
should normally be for cracks which have been 

extended from the original lengths by  small 
amounts.  The lengths o f  cracks one can analyse are, 
of  course, l imited by  the thickness and width  o f  
specimens. 

In measuring crack lengths, the accuracy ob- 
tainable from an optical microscope with bright- 
field i l lumination may be increased by  using an 
ultra-violet st imulated dye penetrant  having visible 

fluorescence. We presume that  the ult imate 

accuracy could be achieved by  using a scanning 

electron microscope with a micrometer  stage. We 

also note that  oxidat ion products formed while a 
speciment is cracked in an oxidizing atmosphere 
may contribute to ease and accuracy o f  crack 
measurement.  The edge o f  specimens should be in- 
spected to ensure that  finishing was sufficient to 
have prevented appreciable crack growth from 
machining flaws at the edges. 
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